Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
active(cons1(X1, X2)) → cons1(X1, active(X2))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons1(mark(X1), X2) → mark(cons1(X1, X2))
cons1(X1, mark(X2)) → mark(cons1(X1, X2))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons1(ok(X1), ok(X2)) → ok(cons1(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
active(cons1(X1, X2)) → cons1(X1, active(X2))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons1(mark(X1), X2) → mark(cons1(X1, X2))
cons1(X1, mark(X2)) → mark(cons1(X1, X2))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons1(ok(X1), ok(X2)) → ok(cons1(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
active(cons1(X1, X2)) → cons1(X1, active(X2))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons1(mark(X1), X2) → mark(cons1(X1, X2))
cons1(X1, mark(X2)) → mark(cons1(X1, X2))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons1(ok(X1), ok(X2)) → ok(cons1(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
cons1(ok(X1), ok(X2)) → ok(cons1(X1, X2))
top(ok(X)) → top(active(X))
Used ordering:
Polynomial interpretation [25]:

POL(2nd(x1)) = x1   
POL(active(x1)) = 2·x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(cons1(x1, x2)) = x1 + x2   
POL(from(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(ok(x1)) = 1 + 2·x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(top(x1)) = x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
active(cons1(X1, X2)) → cons1(X1, active(X2))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons1(mark(X1), X2) → mark(cons1(X1, X2))
cons1(X1, mark(X2)) → mark(cons1(X1, X2))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))
2nd(ok(X)) → ok(2nd(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
active(cons1(X1, X2)) → cons1(X1, active(X2))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons1(mark(X1), X2) → mark(cons1(X1, X2))
cons1(X1, mark(X2)) → mark(cons1(X1, X2))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))
2nd(ok(X)) → ok(2nd(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(2nd(X)) → 2nd(active(X))
2nd(ok(X)) → ok(2nd(X))
Used ordering:
Polynomial interpretation [25]:

POL(2nd(x1)) = 2 + 2·x1   
POL(active(x1)) = 2·x1   
POL(cons(x1, x2)) = x1 + x2   
POL(cons1(x1, x2)) = 2·x1 + 2·x2   
POL(from(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(ok(x1)) = 1 + x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(top(x1)) = 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
active(cons1(X1, X2)) → cons1(X1, active(X2))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons1(mark(X1), X2) → mark(cons1(X1, X2))
cons1(X1, mark(X2)) → mark(cons1(X1, X2))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
active(cons1(X1, X2)) → cons1(X1, active(X2))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons1(mark(X1), X2) → mark(cons1(X1, X2))
cons1(X1, mark(X2)) → mark(cons1(X1, X2))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(from(X)) → mark(cons(X, from(s(X))))
active(from(X)) → from(active(X))
Used ordering:
Polynomial interpretation [25]:

POL(2nd(x1)) = 1 + 2·x1   
POL(active(x1)) = 2·x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(cons1(x1, x2)) = 2·x1 + 2·x2   
POL(from(x1)) = 1 + 2·x1   
POL(mark(x1)) = x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(top(x1)) = 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
active(cons1(X1, X2)) → cons1(X1, active(X2))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons1(mark(X1), X2) → mark(cons1(X1, X2))
cons1(X1, mark(X2)) → mark(cons1(X1, X2))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
active(cons1(X1, X2)) → cons1(X1, active(X2))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons1(mark(X1), X2) → mark(cons1(X1, X2))
cons1(X1, mark(X2)) → mark(cons1(X1, X2))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
cons1(mark(X1), X2) → mark(cons1(X1, X2))
cons1(X1, mark(X2)) → mark(cons1(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
Used ordering:
Polynomial interpretation [25]:

POL(2nd(x1)) = x1   
POL(active(x1)) = 2·x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(cons1(x1, x2)) = 2·x1 + 2·x2   
POL(from(x1)) = x1   
POL(mark(x1)) = 1 + x1   
POL(ok(x1)) = 1 + 2·x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 2·x1   
POL(top(x1)) = x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
QTRS
                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
active(cons1(X1, X2)) → cons1(X1, active(X2))
2nd(mark(X)) → mark(2nd(X))
from(mark(X)) → mark(from(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
active(cons1(X1, X2)) → cons1(X1, active(X2))
2nd(mark(X)) → mark(2nd(X))
from(mark(X)) → mark(from(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(cons1(X1, X2)) → cons1(X1, active(X2))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))
Used ordering:
Polynomial interpretation [25]:

POL(2nd(x1)) = 2·x1   
POL(active(x1)) = 1 + 2·x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(cons1(x1, x2)) = 1 + 2·x1 + x2   
POL(from(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(proper(x1)) = 2·x1   
POL(s(x1)) = x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
QTRS
                      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
2nd(mark(X)) → mark(2nd(X))
from(mark(X)) → mark(from(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
2nd(mark(X)) → mark(2nd(X))
from(mark(X)) → mark(from(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
proper(2nd(X)) → 2nd(proper(X))
proper(s(X)) → s(proper(X))
Used ordering:
Polynomial interpretation [25]:

POL(2nd(x1)) = 1 + x1   
POL(active(x1)) = 2·x1   
POL(cons(x1, x2)) = 2 + x1 + x2   
POL(cons1(x1, x2)) = x1 + x2   
POL(from(x1)) = 2 + 2·x1   
POL(mark(x1)) = 1 + x1   
POL(proper(x1)) = 2 + 2·x1   
POL(s(x1)) = 1 + x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
QTRS
                          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(cons1(X1, X2)) → cons1(active(X1), X2)
2nd(mark(X)) → mark(2nd(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(cons1(X1, X2)) → cons1(active(X1), X2)
2nd(mark(X)) → mark(2nd(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(cons1(X1, X2)) → cons1(active(X1), X2)
2nd(mark(X)) → mark(2nd(X))
proper(from(X)) → from(proper(X))
Used ordering:
Polynomial interpretation [25]:

POL(2nd(x1)) = 1 + 2·x1   
POL(active(x1)) = 2 + 2·x1   
POL(cons(x1, x2)) = 2 + x1 + x2   
POL(cons1(x1, x2)) = 1 + x1 + x2   
POL(from(x1)) = 1 + x1   
POL(mark(x1)) = 1 + x1   
POL(proper(x1)) = 2 + 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
QTRS
                              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

proper(cons(X1, X2)) → cons(proper(X1), proper(X2))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

proper(cons(X1, X2)) → cons(proper(X1), proper(X2))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
Used ordering:
Polynomial interpretation [25]:

POL(cons(x1, x2)) = 2 + x1 + 2·x2   
POL(proper(x1)) = 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
QTRS
                                  ↳ RisEmptyProof

Q restricted rewrite system:
R is empty.
Q is empty.

The TRS R is empty. Hence, termination is trivially proven.